Aminopeptidase N reduces basolateral Na+ -K+ -ATPase in proximal tubule cells.

نویسندگان

  • Kumar Kotlo
  • Sagar Shukla
  • Urmila Tawar
  • Randal A Skidgel
  • Robert S Danziger
چکیده

Aminopeptidase N/CD13 (Anpep) is a membrane-bound protein that catalyzes the formation of natriuretic hexapeptide angiotensin IV (ANG IV) from ANG III. We previously reported that Anpep is more highly expressed in the kidneys of Dahl salt-resistant (SR/Jr) than salt-sensitive (SS/Jr) rats, Anpep maps to a quantitative trait locus for hypertension, and that the Dahl SR/Jr rat contains a functional polymorphism of the gene. This suggests that renal Anpep may be linked to salt sensitivity; however, its effect on renal Na handling has not been determined. Here, we examined regulation of basolateral Na(+)-K(+)-ATPase, a preeminent basolateral Na(+) transporter in proximal tubule cells, by Anpep in LLC-PK1 cells. Treatment of the cells with Anpep siRNA increased total cellular Na(+)-K(+)-ATPase activity and basolateral Na(+)-K(+)-ATPase abundance by approximately twofold. Conversely, Anpep overexpression reduced Na(+)-K(+)-ATPase activity and basolateral abundance by approximately 50%. Similar effects were observed after treatment with ANG IV (10 nM, x30 min and 12 h). ANG IV receptor (AGTRIV) knockdown via specific siRNA relieved the decreases in basolateral Na(+)-K(+)-ATPase levels and activity induced by Anpep overexpression. In sum, these results demonstrate that Anpep reduces basolateral Na(+)-K(+)-ATPase levels via ANG IV/AGTRIV signaling. This novel pathway may be important in renal adaptation to high salt.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shear stress-induced changes of membrane transporter localization and expression in mouse proximal tubule cells.

Our previous studies of microperfused single proximal tubule showed that flow-dependent Na(+) and HCO(3)(-) reabsorption is due to a modulation of both NHE3 and vacuolar H(+)-ATPase (V-ATPase) activity. An intact actin cytoskeleton was indicated to provide a structural framework for proximal tubule cells to transmit mechanical forces and subsequently modulate cellular functions. In this study, ...

متن کامل

Rheogenic transport in the renal proximal tubule

The electrophysiology of the renal Na-K ATPase was studied in isolated perfused amphibian proximal tubules during alterations in bath (serosal) potassium. Intracellular and extracellular ionic activity measurements permitted continuous evaluation of the Nernst potentials for Na+, K+, and Cl- across the basolateral membrane. The cell membrane and transepithelial potential differences and resista...

متن کامل

Ouabain stimulates Na-K-ATPase through a sodium/hydrogen exchanger-1 (NHE-1)-dependent mechanism in human kidney proximal tubule cells.

Recent investigations demonstrate increased Na/H exchanger-1 (NHE-1) activity and plasma levels of ouabain-like factor in spontaneously hypertensive rats. At nanomolar concentrations, ouabain increases Na-K-ATPase activity, induces cell proliferation, and activates complex signaling cascades. We hypothesize that the activity of NHE-1 and Na-K-ATPase are interdependent. To test whether treatment...

متن کامل

Altered subcellular distribution of Na+,K+-ATPase in proximal tubules in young spontaneously hypertensive rats.

During early development of hypertension, the spontaneously hypertensive rat (SHR) demonstrates increased proximal tubule sodium reabsorption. Our previous observations of reduced Na+,K+-ATPase catalytic alpha1 and gamma subunit transcript abundance in SHR proximal tubule led us to test the hypothesis that increased proximal tubule sodium reabsorption may be attributable to altered subunit prot...

متن کامل

Trafficking of Na-K-ATPase and dopamine receptor molecules induced by changes in intracellular sodium concentration of renal epithelial cells.

Most of the transepithelial transport of sodium in proximal tubules occurs through the coordinated action of the apical sodium/proton exchanger and the basolateral Na-K-ATPase. Hormones that regulate proximal tubule sodium excretion regulate the activities of these proteins. We have previously demonstrated that the level of intracellular sodium concentration modulates the regulation of Na-K-ATP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 293 4  شماره 

صفحات  -

تاریخ انتشار 2007